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ON THE INTERPRETATION OF COMBINED TORSION AND
TENSION TESTS OF THIN-WALL TUBES

By W. Prager
SUMMARY

General ways of testing thin-~wall tubes under combined tension and
torsion as a means of checking the various theories of plasticity are
discussed. Suggestions also are given for the interpretation of the
tests.

INTRODUCTION

‘ Combined torsion and temsion (or compression) of thin-wall tubes
constitutes one of the few testing errangements in which a fairly gensral
state of uniform stress can be realized without too great experimental
difficulties. Tt is not surprising, thersfore, that this arrangement
has been freaquently used to check the vearious theoriss of plasticity.
(See, for instence, references 1 to 5.) TUnfortunately, such combined
tension and torsion tests are often conducted so as to keep the ratio
of axiel load and torqus constent during esny one test. In this case,
the directions of the principal stresses as well as the ratios of their
intensities are preserved during the plastic deformation, and verious
theories of plasticity furnish identical predictions. Tests of this
particulaer type therefore do not provide a check of ‘these theoriles.

In the present paper, more general ways of testing thin-wall tubes
under combined tension and torsion are discussed, and suggestions are
given for the Interpretation of such tests.

TEEORTES OF PLASTIC DEFORMATION AND PLASTIC FLOW

In the methematical theory of plasticity two kinds of stress-strain
relations are currently used to describe the mechanical behavior of
quasi~isotropic metaels in the strain-herdening renme. In this paper,
the theories of these two groups eare called theories of plastic deformatlon
and theories of plastic flow, following an apt pronosal of A. A. Ilyushin
(reference 6). A recent peper by G. H. Hendelman, C. C. Lin, and W. Prager
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(reference T7) contains a detailed discussion of the general stress-strain
reletions of these theorles; the present discussion can therefore be
restricted to the special case of combined tension and torsion of thin-
vall tubes.

The stress-strain relation of a theory of plastic deformation
establishes a one-~to-one correspondence between the instantaneous states
of stress and strain. The stress-straln relation of a theory of plastic
flow, on the other hand, establishes a one-to-one correspondence between
the infinitesimel increments of stress and strain when the instantaneous
state of stress is known. A stress-strain relation of this kind will
therefore contein the ingtanteneous stress components in addition to
the dlfferentials of the components of stress end strain; it must, of
course, be homogeneous in these differentials, end if there is to be
a one-to-one correspondence between the differentials of stress and
strain, the stress-strain reletion must be linear in these differentials.
It is often convenient to avold differentials by replacing them by the
first derivatives of the components of stress and strain with respect to
tine. When written in this form, the stress-strain relations of the
theories of plastic flow appear as linear forms in the time rates of
change of stress and strain with coefficients which depend on the
instantaneous stress. It is importent to remark, however, that these
stress-strain relations do not represent any viscosity effects in spite
of the appeareance of the rates of stress and strain. In fact, since
these rates appear In a homogeneous form, the relation between stresses
and strains is not affected by am erbitrary distortion of the time
scale; accordingly, time enters only as a persmeter which is convenient
for the detailed description of the loeding process. If the loads
applied to a plastic body very in such a menner that there ies at least
one load. vwhich always varies when the other loads very, the intensity
of this load may be used as a measure of time.

If the stress-strain relations of a theory of plastic deformation
are differentiated with respect to time, the resulting reletions will
also be linear and homogeneous in the time derivatives of stress and
strain, and hence resemble the stress-siraln relations of the theory of
plastic flow. However, the stress-strain relations obteined in this
memner, while involving the time derivatives of stress snd strain, can
be integrated with respect to time. The stress-straln relations of the
theories of plastic flow, on the other hend, are not supposed to be
integreble in this menner.

DEVIATIONS OF STRESS AND STRAIN ~ POWERS
AND INVARTANTS OF TEE STRESS DEVIATICON

In the followlng discussion, the symbols are defined as

R meean rediue of- tubular test specimen
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w wall thickness of test specimen

P axial force

T torgue

g axisl stress (P/21Rw)

T shearing stress (T/Qﬂ%)

€ unit extension in axial direction

nsn* unit contractions in circumferential and
radial directions, respectively

6 angle of twist per unit length

¥ shearing strain (R6/2)

For convenience, the axial force P and the axial stress o are assumed
to represent temsion in the present paper. In the case of compression,
the signs of P end o must be changed in &ll formulas. Also, contrary
to present engineering practice, the shearing strain is defined herein
as RO/2 rather then RO. This is necesseary if unduly complicated
formulas are to be avoided.

With the symbols as defined, the tensors of stress asnd strain are
glven by '

o B 0 € 4 0
T 0 0 and ¥y -1 0 (1)
0O 0 O© 0O 0 -n*

The meesn normel stress equals o¢/3, and the mean normal strain,
1
=(c = - n¥*
3(os n - n%). .

The deviations of stress and strain are obtained by subtracting 0'1/3
and (¢ - ¢ - Tl*)I/3. from the tensors of stress and strain, regpectively,
where '

1 o0 O

I=J/0 1 o (2)



L NACA TN No. 1501

(Thus, - | R
20 /3 T 0 -

S=|T -6/3 o |- (3)

0 0 -o/3
and -
(26 + 1 + %) /3 4 | 0
E = 7 - (e+2y - %)/3 0 (1)
) 0 - (€ -n+2n%)/3

are the deviations of sitress and strain. In the present paper, underscoring
is used tc indicate tensors.

The squere of the stress deviation is obtained by squaring eguation (3):

ll-c2/9 + 72 or/3 0 .
_ F - ot1/3 6?/9 + 12 0 (5)
0 0 o@/9 ’
Similerly, : : -
803/27 + g0 01'2/3 + 3 °
s3 = | 02/3 + 13 ~-a3/27 0 (6)
0 0 ~93/27

As is well known, the traces of the tensors §° and §3 (i.e., the
sums of the terms in the principal disgonals) are independent of the
Partiouler Cartesian coordinete system to which these tensors may be
referred. It will be convenlent to define as tlsxg second- and third-
order invarients of §$ one-half the trace of S~ &and one-third the

trace of §§3, respectively?

J-%.02+T2 (7)
K-—?-or3 + L 542 (8)
27 3

Inspection of equations (3), (5), (6), (7), and (8) shows that
83 =38+ KL (9)
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This is the special form which the Hamilton-Ceyley theorem (reference 8)
assumes for the stress deviation. Because of this relation, the third
end all higher powers of S can be expressed In terms of §, S5, and
powers of the invarients J end K, as is seen by multiplying equation (9)
repeatedly by S and using equation (9) to reduce the right-hend sides
of the resulting equations.

REVERSIBLE AND PERMANENT STRAINS - LOADING AND UNLOADING

The theories of plastic deformestion as well as those of plastic
flow assume the total strain to be the sum of & reversible and a
permanent component, often called elastic and plastic strains. Within
the elastic range, the permement strains venish and all strains eare
reversible. Once the elastic limlt has been exceeded, complete unloading
of -a test specimen, which has been under a state of homogeneous stress,
will reveal the permanent or plastlc strain associated with this state
of stress. That component of strain which diseppears during the unloading
process is the reversible or elastic strain.

It is generally essumed thet each of these two components of strain
is releted to the stress in a mammer which does not involve the other
component. In perticular, the reversible strain is assumed to be related
to the stress by meens of the generalized law of Hooke. Moreover, it
is generslly assumed that all changes of volume are completely reversible,
so that the permanent strain involves a change of shape but no chenge
of wvolume.

In the following disgussion, reversible and permenent strains will
be indicated by ' and =, respectively. The assumptions Just stated

are then expressed by the followlng equations:
-

€' =n o'/Eo

,ql = n*!
-UOE' L (10)

= Voo [Eq

y' = 1/2G,
T4

1 1]

7+ ¥ = (11)
o &nd v, denote the values of Young's modulus, shear
modulus, and Poisson's ratio in the elastic range. Since

where E , G,

E, = 26,(1 + v,) (12)
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subetitution of eguation (10) into equation (%) and comparison with
equation (3) yield

E' = 8/06G, (13)
The permenent strain is therefore givem by
E'=E-E'

=E - 5/2G, (14)

Reference to equations (3) and (4) shows equation (14) to yield only three
independent scalar equations. Together with eguation ( ll), these three
equations permit the permenent strains s", M, n*", and 7" to be
computed from the measured totel strains €, 71, n%¥, 7 end the

stresses 5 and T; they are

1
" = 3(2¢ + q + %) - §-§—o (15)
1 1 ag
- - 3(6 + 21] - 1’]*) + 3-—(}0 . (16)
and
T T
=y v — 1
V4 7 " Sag (17)

Before specific stress~strain relations can be formulated, =
criterion for loading and wmloeding must be adopted. In the case of
gimple temsion or compression, loading corresponds to an increase in 02
end unloading, to & decrease. For the more generel states of strees
considered herein, it will be assumed that loading corresponds to an
increase of the inveriant J (equation (7)) end umloading, to a decrease.
Thus, for loading,

%ua+f+>o (18)
and for unloading,
%0‘5’+ T+ <0 (19)

where the dots denote differentiation with respect to time.



NACA TR No. 1501 T

STRESS~STRATN RELATTONS

Discussing theories of plastic deformatiom, W. Prager (reference 9)
esteblished the most gensral stress-strein relatlon which is competible
with certain simple postulates. A useful transformation of this stress-
strain relation is found in section 5 of reference T. With

o = K°/33 (20)

J1> (21)

thils stress-strain relation may be written in the form
2GoE" = £(3,0) [8 + B(a)T] (22)

For combined temnsion and torsion of thin-wall tubes, equation (22)
may be further trensformed as follows. According to equation (20),

PR+ 9r2)2

and

Ta.g- 82-
= Jg...

w |0

27(c2 + 2r2)3
2
- "2(2"2 9 (23)
27(p= + 3)3
where
p=oc/r (24)
Moreover, . .
=1 (3P
2
‘ s‘r? (p® + 3) (25)

The function f£(J,a) .can therefore be considered as a function of -
and p

£(J,a) = o(t,p) (26)
Similarly, the function B(a) can be considered as a function of p:

B(a) = ¥(p) (27)
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Equetion (22) may thus be writtem in the form:

268" = o(7,0) [5+ ¥o)T] (28)
wvhere
202/9 + 1/3 0/3 0
o -y 22F*9) o/3 - Rl +1/3 0 (29)
3(p2 + 3)2
0 0 - p2f9 - 2/3

The functions @ a.nd. ¥ can be determined by & seriles of tests
during each of which the va.lue of p 1is kept-constant. According to
equation (28), the ratio ¢"/y" will remain constant during each of
these tesis:

" 6p(p + 3)2 + 3p(20% + 9)(202/9 + 1/3) ¥(p)

30
i 9(o= + 3)2 + p=2(20° + 9) ¥(p) (30)
Each observed value of e"/‘r" corresponding to a certain value of o
therefore furnishes the valve of ¥ for this value of o.
After w¥(p) hes been obtained, the function o(r,0) cen be
determined from the shear component of equation (22):
2Gy" 2
i 20 +
- o(r,0) |1+ ¥(p) 27+ ) (31)

9(p? + 3)2

The bracketed term on the right-hend side of this equation depends only
on p and thus remains constant during each of the aforementioned tests.
A graph of the function &(r,p) for the particular value of p which is
meintained constant during the test 1s therefore obtalned by plotting

18607 "(02 + 3)2 (32)

T[9(02 + 3)2 + p2(26% + 9) y(0)]

egainst ~r. Here, 7" must be computed from the observed shearing
strain 7y in accordance with equation (17).

@(r,p) =

As regards the theories of plastic flow, the differential stress-
strain relation which is amalogous to equation (23) has the form

26,38" = o(7,0) [8+ ¥(p)T] a5 (33)

If o(v,p) and ¥(p) ere glven, the fumction &(r,p) cen be determined
so that equetions (28) and (33) predict the same mechanical behavior for
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any test during which p 18 kept comstant. During such a test, o = p7,
and hence

do = p 4T
= g dt /T
ds = 8 ar/r (3k)
4T = T ar/T
aJ = 23 ar/+ J
Equation (28) thus yields
2G, dg" '(%?— +%> (s + ¥2) ax (35)
while equation (33) furnishes
26, ag" = 20 £ (8 + ¥I) ar (36)

On account of eguation(?‘j) , comparison of equations (35) end (36) yields

.3 @+2> (37)

27(p2 + 3)\3T1 T
SUGGESTED TEST

If the functions ¢ and @ are related to each other by means
of equation (37), the stress-strain relations,equations (28) and (33)
furnish the same prediction for any test during which p 1is kept
constant. A decislion between the theorles of plastic dsformation end
Plestic flow therefore requires more general tests during which p 1is
allowed to very. For mild steel with negligible strain hardening such
tests have been made by K. Hohenemser and W. Prager (reference 3); for
materials with pronounced strain hardening, however, systemetic tests of
this kind do not seem to have been carried out as yet. A possible
method by which these tests could be carried out is given in the following
discussion.

A decisive difference between the two kinds of theory of plastic
action is revealed in a test in which simple torsion is followed by
tension during which the torque i1s meinteined constent. At the instant
of beginning tension ¢ = O and thereafter dr = 0. Accordingly,

d.J=-2§-(0’d.G+3TdT)=O (38)
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at this instant, and equation (33) yields

dg" = 0 (39)
According to the thearies of plastic flow, the initial velue of the
retio do/ie should therefore equal Young's modulus E, quite independently

of the precise form of the functions ¢ and V. According to the
theories of plastic deformation, on the other hand,

2Go0E" = (8 + ¥T) ap + (@8 + ¥ 4T + T av) (40)
Now, at the instant of begimming temsion o = Q, that is, p = 0, and

thereafter & = O, that is, dp = do/r. Thus, the following normal
components in the direction of the axis of the tube are obtained:

T)O S (41)

aE" ) ae" J
Equation (40) yields then
9E, de" = @(r,0) (1L + vy) [6+ ¥(0)] ao (42)

vhere G __hqg been replaced by ite velune from equation (12). Since
de' = do/E, end de = d¢' + de",

do 9E
€ "9+ o(r,0) (1~ go) B + ¥(o} (43)

Similerly,
dg G,
— T — hl
Ty ()

Since the functions @ and ¥ can be determined from the tests
described in the preceding section, the right-hand sides of equations (43)
end (44) cen be computed as functions of T and cquation (28) can be
checked by experiment.

Brown University -
Providence, R. I., March 26, 1947



NACA TN No. 1501 11
REFERENCES

l. Lode, W2 Der Einfluss der mittleren Hauptispannung suf das Fliessen
der Metalle. Forsch.-Arb. Geb. Ing.-Wes., VDI-Verlag G.M.b.H.
(Berlin), Heft 303, 1928.

2. Teylor, G. I., and Quinney, H.: The Plastic Distortion of Metals.
Phil. Trans. Roy. Soc. (London), ger. A, vol. 230, Nov. 13, 1931,
PP. 323-362. - _

3+ Hohenemser, K., and Prager, W.: The Mechanics of the Plastic
Deformation of Mild Steel. R.T.P. Translation No. 2468,
British Ministry of Alrcraft Production. (From Z.f.a,.M.M., Bd. 12,
Heft 1, Feb. 1932, pp. 1-1k.)

4. Schmidt s R.: Ueber den Zusammenhang von Spannungen imd Formsenderungen
im Verfestigungsgebiet. Ing.-Archiv, Bd.III, Heft 3, 1932, pp 215
PP 215-235.

5+ Nedai, A.,"end Davis, E. A.: Plastic Behavior of Metals in the
Strain-Hardening Range. Parts I and II. Jour. Appl. Phys.,
vol. 8, no. 3, March 1937, pp. 205-217.

6. Ilyushin, A. A.: Relation between the Theory of Saint Venant-Levy-
Mises and the Theory of Small Elastic-Plastic Deformations. Free
translation by Appl. Math. Group, Brown Univ., 1945, for the
David W. Taylor Model Basin, U.S. Navy. (From Prikl. Mat. i Mekh.
(Moscow), vol. 9, 1945, pp. 207-218.)

T+ Handelman, G. H., Lin, C. C., and Prager, W.: On the Mechanical
Behavior of Metals in the Strain-Herdening Range. Quarterly Appl.
Math., vol. IV, no. 4, Jan. 1947, pp. 397-407.

8. BScher, Maxime: Introduction to Higher Algebra. The Macmillan Co.,
1%7’ P. 296°

9. Prager, W.: Strain Hardening under Combined Stresses. Jour. Appl.
Phy's-, vol. 16, No. 12, Dec. 19,4-5, PP 837‘&0.



